Modifiche

Jump to navigation Jump to search
nessun oggetto della modifica
Riga 1: Riga 1:  +
[[File:Vasca-Ultrasuoni.jpg|thumb|Vasca a ultrasuoni]]
 +
 
Le ''vasche ad ultrasuoni'' sono uno strumento di pulizia sviluppato, a livello industriale, a metà del secolo scorso. Dal 1970 circa questa tecnologia è disponibile anche per uso domestico<ref>Paul Wahal - ''Put sound waves to work in your workshop'' in Popular Science, March 1970.</ref>.
 
Le ''vasche ad ultrasuoni'' sono uno strumento di pulizia sviluppato, a livello industriale, a metà del secolo scorso. Dal 1970 circa questa tecnologia è disponibile anche per uso domestico<ref>Paul Wahal - ''Put sound waves to work in your workshop'' in Popular Science, March 1970.</ref>.
 
Una macchina pulitrice di questo tipo sfrutta la generazione di onde ultrasoniche in un apposita soluzione solvente per pulire in profondità oggetti anche di fattura molto complicata.  
 
Una macchina pulitrice di questo tipo sfrutta la generazione di onde ultrasoniche in un apposita soluzione solvente per pulire in profondità oggetti anche di fattura molto complicata.  
Riga 11: Riga 13:  
La cavitazione è un fenomeno che consiste nella formazione di bolle di vapore all'interno di un fluido che, successivamente, implodono con estrema violenza. Apparentemente è molto simile all'ebollizione ma, mentre nell'ebollizione è la tensione di vapore che salendo (a causa dell'aumento di temperatura) supera la pressione idrostatica e crea bolle di vapore meccanicamente stabili, nella cavitazione è la pressione del liquido che scendendo improvvisamente al di sotto della tensione di vapore fa si che si crei una bolla che è stabile solo fino a quando rimane nella zona di bassa pressione idrostatica, ma che implode violentemente al risalire della pressione (fig. 1).
 
La cavitazione è un fenomeno che consiste nella formazione di bolle di vapore all'interno di un fluido che, successivamente, implodono con estrema violenza. Apparentemente è molto simile all'ebollizione ma, mentre nell'ebollizione è la tensione di vapore che salendo (a causa dell'aumento di temperatura) supera la pressione idrostatica e crea bolle di vapore meccanicamente stabili, nella cavitazione è la pressione del liquido che scendendo improvvisamente al di sotto della tensione di vapore fa si che si crei una bolla che è stabile solo fino a quando rimane nella zona di bassa pressione idrostatica, ma che implode violentemente al risalire della pressione (fig. 1).
   −
Durante l'implosione, il fluido circostante riempie immediatamente il vuoto creato dal collassamento della bolla. In acqua libera questo fenomeno è simmetrico, ma in presenza di un oggetto immerso, che genera una discontinuità, il violento flusso di liquido che va a riempire lo spazio della bolla è asimmetrico e genera un'intensa onda d'urto orientata verso la superficie.<ref>Yuanxiang Yang, Qianxi Wang, and Soon Keat Tan - ''The roles of acoustic cavitations in the ultrasonic cleansing of fouled micro-membranes'' in Journal of Acoustical Society of America vol. 133 issue 5, May 2013.</ref> Questa onda d'urto è la responsabile dell'effetto pulente.  
+
Durante l'implosione, il fluido circostante riempie immediatamente il vuoto creato dal collassamento della bolla. In acqua libera questo fenomeno è simmetrico, ma in presenza di un oggetto immerso, che genera una discontinuità, il violento flusso di liquido che va a riempire lo spazio della bolla è asimmetrico e genera un'intensa onda d'urto orientata verso la superficie dell'oggetto stesso.<ref>Yuanxiang Yang, Qianxi Wang, and Soon Keat Tan - ''The roles of acoustic cavitations in the ultrasonic cleansing of fouled micro-membranes'' in Journal of Acoustical Society of America vol. 133 issue 5, May 2013.</ref> Questa onda d'urto è la responsabile dell'effetto pulente.  
    
[[File:Implosione-Bolla-Cavitazione.jpg|miniatura|Fig. 2 - Il collasso di una bolla di cavitazione con evidente la formazione del micro burst al centro.]]
 
[[File:Implosione-Bolla-Cavitazione.jpg|miniatura|Fig. 2 - Il collasso di una bolla di cavitazione con evidente la formazione del micro burst al centro.]]
Riga 31: Riga 33:  
La cavitazione aumenta notevolmente l'efficacia delle eventuali sostanze di pulizia disciolte nell'acqua, consentendo così l'impiego di minori sostanze chimiche, per contro viene aumentata anche l'aggressività di queste sostanze e la loro capacità di attaccare i materiali da pulire. Per cui la corretta determinazione della soluzione di pulizia è estremamente importante e dipende dal materiale che deve essere sottoposto al trattamento. Nelle applicazioni industriali spesso al posto dell'acqua si usano solventi particolari studiati specificamente per i materiali da trattare e per la tipologia di sostanze da asportare. Per le applicazioni domestiche è sufficiente l'acqua con eventuale aggiunta di sostanze tensioattive (previa valutazione degli effetti che le stesse possono avere sull'oggetto da pulire).   
 
La cavitazione aumenta notevolmente l'efficacia delle eventuali sostanze di pulizia disciolte nell'acqua, consentendo così l'impiego di minori sostanze chimiche, per contro viene aumentata anche l'aggressività di queste sostanze e la loro capacità di attaccare i materiali da pulire. Per cui la corretta determinazione della soluzione di pulizia è estremamente importante e dipende dal materiale che deve essere sottoposto al trattamento. Nelle applicazioni industriali spesso al posto dell'acqua si usano solventi particolari studiati specificamente per i materiali da trattare e per la tipologia di sostanze da asportare. Per le applicazioni domestiche è sufficiente l'acqua con eventuale aggiunta di sostanze tensioattive (previa valutazione degli effetti che le stesse possono avere sull'oggetto da pulire).   
   −
Un effetto collaterale della cavitazione, a causa dell'energia rilasciata, è il riscaldamento dell'acqua con l'uso per cui è necessario interrompere il trattamento in caso di materiali sensibili al calore.
+
Un effetto collaterale della cavitazione, a causa dell'energia rilasciata, è il riscaldamento dell'acqua con l'uso per cui è necessario interrompere il trattamento in caso di materiali sensibili al calore.
 +
 
 +
Infine, come risulta dall'esperienza riportata da David Nishimura,<ref>si fa riferimento a [http://vintagepensblog.blogspot.com/2018/03/a-warning-about-pens-in-ultrasonic.html questa pagina] in inglese.</ref> effettuare la pulizia in una vasca ad ultrasuoni con una immersione parziale del pezzo può creare riscaldamenti localizzati molto rilevanti sulle parti della penna lasciata non immersa, presumibilmente per la concentrazione delle onde trasmesse dalla vasca, che nel caso indicato ha comportato danneggiamenti seri del materiale.  
    
La maggior parte dei materiali duri, non assorbenti (metalli, plastica etc.) e non attaccabili chimicamente dal fluido di lavaggio possono essere sottoposti al trattamento ad ultrasuoni. Fra questi si distinguono componenti elettronici, cavi, oggetti vari in plastica, vetro, alluminio o ceramica.
 
La maggior parte dei materiali duri, non assorbenti (metalli, plastica etc.) e non attaccabili chimicamente dal fluido di lavaggio possono essere sottoposti al trattamento ad ultrasuoni. Fra questi si distinguono componenti elettronici, cavi, oggetti vari in plastica, vetro, alluminio o ceramica.

Menu di navigazione